impact factor of separation and purification technology

impact factor of separation and purification technology is a critical metric used to evaluate the influence and quality of research published in the field of separation science. This field encompasses various techniques and processes essential for isolating, purifying, and analyzing chemical, biological, and industrial substances. The impact factor acts as a benchmark for researchers, institutions, and publishers to assess the significance and reach of scientific journals dedicated to separation and purification technologies. Understanding this metric not only helps in identifying leading journals but also reflects the advancements and trends shaping the discipline. This article explores the concept of impact factor within this specialized scientific area, its calculation, significance, and the broader implications for research development and innovation. The discussion further delves into factors influencing the impact factor and strategies for enhancing journal visibility and research impact in separation and purification technology.

- Understanding the Impact Factor in Separation and Purification Technology
- Calculation and Interpretation of Impact Factor
- Significance of Impact Factor for Researchers and Journals
- Factors Influencing the Impact Factor of Separation and Purification Technology Journals
- Strategies to Improve Impact Factor in This Field

Understanding the Impact Factor in Separation and Purification Technology

The impact factor of separation and purification technology journals serves as a quantitative measure reflecting the average number of citations to recent articles published in these journals. It is widely recognized as an indicator of a journal's prestige, quality, and influence within the scientific community. Separation and purification technologies cover a broad range of disciplines, including chromatography, membrane science, crystallization, filtration, and extraction methods. These techniques are crucial in pharmaceuticals, environmental science, food technology, and chemical manufacturing. The impact factor helps highlight the most influential research and journals that drive innovation and development in these areas.

Definition and Origin of Impact Factor

The impact factor was originally conceptualized by Eugene Garfield as a tool to help librarians and researchers identify key journals in specific fields. It is calculated annually by indexing agencies such as Clarivate Analytics through the Journal Citation Reports (JCR). For journals focusing on separation and purification technology, the impact factor acts as a snapshot of how frequently published articles are cited within a given timeframe, typically two years.

Relevance to Separation and Purification Technology

In scientific disciplines that rely heavily on experimental techniques and innovations, such as separation and purification technology, the impact factor helps researchers determine where to publish their work for maximum visibility. It also aids in gauging the quality of research outputs and emerging trends. Journals with higher impact factors are often perceived as more authoritative and reliable sources, influencing funding decisions and academic recognition.

Calculation and Interpretation of Impact Factor

The calculation of the impact factor for journals in separation and purification technology follows a standardized formula based on citation data. Understanding this calculation is vital for interpreting what the impact factor truly represents and its limitations.

Formula for Impact Factor

The impact factor for a given year is calculated by dividing the number of citations received in that year to articles published in the previous two years by the total number of "citable items" published in those two years. Specifically:

- 1. Count the citations in the current year to articles published in the preceding two years.
- 2. Divide this citation count by the total number of articles and reviews published in those two years.

This calculation yields the average number of citations per article, which is reported as the impact factor.

Interpretation in the Context of Separation and Purification Technology

An impact factor value provides a relative ranking of journals within the field. For example, a journal with an impact factor of 5 means that, on average, each article published in the last two years was cited five

times in the current year. Higher impact factors indicate greater academic influence and recognition. However, it is important to consider that citation behaviors can vary by sub-discipline, and impact factors should be interpreted alongside other qualitative and quantitative measures.

Significance of Impact Factor for Researchers and Journals

The impact factor of separation and purification technology journals holds substantial significance for multiple stakeholders including researchers, academic institutions, and journal publishers.

For Researchers

Researchers often use the impact factor as a criterion for selecting journals to submit their manuscripts. Publishing in high-impact journals can enhance the visibility of their work, increase citation potential, and bolster academic reputations. Furthermore, impact factors are frequently considered during grant applications, promotions, and tenure evaluations.

For Journals and Publishers

Journals strive to increase their impact factor as it attracts higher quality submissions and increases subscription and readership rates. A higher impact factor can also lead to greater advertising revenue and partnerships. Publishers in separation and purification technology invest in editorial quality, peer review rigor, and timely publication to maintain or improve their journal's ranking.

Institutional and Funding Implications

Academic institutions often rely on impact factors to assess research output quality and allocate resources. Funding agencies may prioritize projects published in high-impact journals, reinforcing the importance of this metric in the research ecosystem.

Factors Influencing the Impact Factor of Separation and Purification Technology Journals

Several factors affect the impact factor of journals dedicated to separation and purification technology. Understanding these elements helps stakeholders manage expectations and strategize for improvement.

Research Trends and Emerging Topics

Journals that focus on rapidly evolving or highly relevant topics tend to attract more citations. For example, advances in membrane technology for water purification or novel chromatographic methods can drive increased scholarly attention and citations.

Publication Frequency and Article Types

Journals publishing more review articles or special issues often receive higher citations since reviews synthesize extensive literature and are widely referenced. Additionally, increased publication frequency can affect the total number of citable items and citations.

Collaboration and International Reach

Journals with a broad international authorship and readership tend to have higher impact factors. Collaborative research across institutions and countries often results in higher citation rates due to wider dissemination.

Indexing and Accessibility

Being indexed in major databases and offering open access options can increase a journal's visibility and citation potential. Separation and purification technology journals accessible to a wider audience benefit from improved impact factors.

Strategies to Improve Impact Factor in This Field

Journal editors, publishers, and researchers can implement several strategies to enhance the impact factor of separation and purification technology publications.

Encouraging High-Quality Submissions

Prioritizing rigorous peer review and publishing cutting-edge research attracts citations. Inviting leading experts to contribute reviews and original research can also elevate content quality.

Promoting Special Issues and Thematic Collections

Focusing on trending topics through special issues can generate interest and increase citation rates. These

collections highlight important advances and encourage community engagement.

Enhancing Visibility and Access

Adopting open access models, improving online platforms, and indexing in prominent databases improve discoverability. Active promotion via conferences and digital media further boosts readership.

Facilitating Collaboration and Networking

Journals can foster international collaborations by encouraging multi-institutional research and cross-disciplinary studies. This approach broadens the citation base and impact.

- Maintain rigorous peer review standards
- Publish high-impact review articles
- Focus on emerging and relevant research topics
- Increase journal accessibility and indexing
- Promote international collaboration and authorship

Frequently Asked Questions

What is the impact factor of the journal 'Separation and Purification Technology'?

As of 2023, the impact factor of 'Separation and Purification Technology' is approximately 6.7, reflecting its influence in the field of chemical engineering and separation processes.

Why is the impact factor important for the journal 'Separation and Purification Technology'?

The impact factor indicates the average number of citations received per paper published in the journal, serving as a metric for the journal's influence and prestige within the scientific community.

How often is the impact factor of 'Separation and Purification Technology' updated?

The impact factor is updated annually by Clarivate Analytics and published in the Journal Citation Reports typically every June for the previous year.

How does the impact factor of 'Separation and Purification Technology' compare to other journals in the field?

With an impact factor around 6-7, it is considered one of the leading journals in separation science and chemical engineering, ranking high among peer journals in similar disciplines.

What factors influence the impact factor of 'Separation and Purification Technology'?

Factors include the number of citations to articles published in the journal, publication frequency, article quality, and the relevance of research topics to the scientific community.

Can the impact factor of 'Separation and Purification Technology' affect researchers' decisions to publish?

Yes, many researchers consider the impact factor as an indicator of journal quality and visibility, influencing their choice to submit work to high-impact journals like 'Separation and Purification Technology'.

Does a higher impact factor mean better quality articles in 'Separation and Purification Technology'?

While a higher impact factor often correlates with influential research, it does not guarantee the quality of every article; peer review and editorial standards also play critical roles.

How can authors increase the chances of their articles being cited in 'Separation and Purification Technology'?

Authors can enhance citations by publishing novel, relevant research, choosing impactful topics, ensuring clear and accessible writing, and promoting their work through conferences and social media.

What is the difference between impact factor and other metrics for

'Separation and Purification Technology'?

The impact factor measures average citations per paper, while other metrics like h-index, CiteScore, and Eigenfactor consider different citation patterns, publication volume, and journal influence over time.

Where can I find the official impact factor of 'Separation and Purification Technology'?

The official impact factor is published annually in the Journal Citation Reports by Clarivate Analytics and can also be found on the journal's official website and academic databases such as Web of Science.

Additional Resources

1. Impact Factor Analysis in Separation and Purification Technology

This book explores the concept of impact factors specifically within the field of separation and purification technologies. It provides a comprehensive overview of how impact factors are calculated, interpreted, and used to assess research quality and influence in this scientific domain. The text also discusses trends and advancements in separation techniques and their implications for industrial and environmental applications.

2. Advances in Separation Science: Impact and Innovation

Focusing on recent innovations, this book highlights cutting-edge developments in separation science and their impact on purification processes. It examines various methodologies such as membrane technology, chromatography, and adsorption, emphasizing their role in enhancing separation efficiency. The book also evaluates the scientific impact of these technologies through citation metrics and research influence.

3. Separation and Purification Technology: Metrics and Methodologies

This volume delves into the quantitative metrics used to evaluate separation and purification research, including impact factors and other bibliometric indicators. It discusses the strengths and limitations of these measures and suggests best practices for researchers and institutions. Case studies demonstrate how impact analysis can guide research priorities and funding decisions.

4. Bibliometrics in Chemical Engineering: Separation and Purification Technologies

A detailed examination of bibliometric techniques applied to the field of chemical engineering, with a focus on separation and purification technologies. The book covers data sources, citation analysis, and the role of impact factor in shaping scientific discourse. It also explores how bibliometric trends reflect technological progress and emerging research areas.

5. Environmental Impact and Purification Methods: A Scientific Perspective

This book connects environmental challenges with separation and purification technologies, assessing their impact through scientific metrics. It discusses the role of purification methods in mitigating pollution and promoting sustainability. The text reviews the research impact and effectiveness of various technologies in environmental applications.

6. Membrane Technology: Impact Factors and Industrial Applications

Specializing in membrane-based separation, this book analyzes the impact factors associated with research outputs in this subfield. It covers membrane design, operation, and commercialization, highlighting influential studies and key contributors. The book provides insights into how impact factor trends correlate with technological adoption in industry.

7. Chromatography Techniques: Research Impact and Trends

An in-depth look at chromatography methods used in separation science, this book assesses their research impact through citation and publication analysis. It identifies leading research groups and breakthrough studies that have shaped the field. The book also discusses future directions and the evolving significance of impact factors in chromatography research.

8. Adsorption and Separation: Evaluating Research Influence

Focusing on adsorption processes in separation and purification, this book evaluates the influence of related research using impact metrics. It provides a critical analysis of publication patterns and the dissemination of key findings. The text discusses how impact factors help in recognizing influential technologies and guiding future research.

9. Separation Technology in Pharmaceutical Purification: Impact and Innovation

This book addresses the crucial role of separation technology in pharmaceutical purification, highlighting its scientific and practical impact. It reviews important research contributions and their citation impact within the pharmaceutical industry. The book also explores innovative purification techniques and their potential to transform drug manufacturing processes.

Impact Factor Of Separation And Purification Technology

Find other PDF articles:

https://staging.devenscommunity.com/archive-library-701/pdf? dataid = oSw71-1225 & title = surviving-the-aftermath-cheat.pdf

impact factor of separation and purification technology: Advanced Oxidation Processes (AOPs) in Water and Wastewater Treatment Aziz, Hamidi Abdul, Abu Amr, Salem S., 2018-08-03 Population growth and industrial development have increased the amount of wastewater generated by urban areas, and one of the major problems facing industrialized nations is the contamination of the environment by hazardous chemicals. Therefore, to meet the standards, suitable treatment alternatives should be established. Advanced Oxidation Processes (AOPs) in Water and Wastewater Treatment is a pivotal reference source that provides vital research on the current, green, and advanced technologies for wastewater treatment. While highlighting topics such as groundwater treatment, environmental legislation, and oxidation processes, this publication explores the contamination of environments by hazardous chemicals as well as the methods of decontamination and the reduction of negative effects on the environment. This book is a vital reference source for

environmental engineers, waste authorities, solid waste management companies, landfill operators, legislators, environmentalists, and academicians seeking current research on achieving sustainable management for wastewater treatment.

impact factor of separation and purification technology: Innovative Biorefinery Processes for Agri-Food Value Chains Brijesh K Tiwari, Milica Pojic, Xianglu Zhu, 2025-08-01 Innovative Biorefinery Processes for Agri-Food Value Chains provides detailed information on biorefinery concepts and technologies and their applications in agri-food value chains. It covers various topics related to biorefinery, such as biomass feedstocks, conversion technologies, product recovery, and economic and environmental sustainability. Divided into five sections, the first one brings the definitions and fundamental information of agri-food biorefinery. The second section explores biomass for agri-food biorefinery. Section three deals with technological aspects of biorefinery, while Section four brings Novel value chains using renewable biomass for food biorefinery and bioproducts, and Section five presents the environmental and social aspects of biorefinery. The book also includes case studies and examples of successful biorefinery projects from around the world. Edited by a team of experts in the field, this book is a great resource for researchers, academics, industry professionals, policymakers, and graduate and post-graduate students working in the fields of food science and technology, agriculture, and sustainable development. - Discusses the economic and environmental sustainability of biorefinery systems, including their impact on the circular economy and the bioeconomy - Covers the application of biorefinery in agri-food value chains, including case studies and examples - Explains biorefinery concepts and technologies, including their benefits and limitations

impact factor of separation and purification technology: Advances in Technologies for Producing Food-relevant Polyphenols Jose Cuevas Valenzuela, Jose Rodrigo Vergara-Salinas, Jose Ricardo Perez-Correa, 2016-09-19 The growing concern for human wellbeing has generated an increase in the demand for polyphenols, secondary plant metabolites that exhibit different bioactive properties. This increasing demand is mainly due to the current applications in the food industry where polyphenols are considered essential for human health and nutrition. Advances in Technologies for Producing Food-relevant Polyphenols provides researchers, scientists, engineers, and professionals involved in the food industry with the latest methodologies and equipment useful to extract, isolate, purify, and analyze polyphenols from different available sources, such as herbs, flora, vegetables, fruits, and agro-industrial wastes. Technologies currently used to add polyphenols to diverse food matrices are also included. This book serves a reference to design and scale-up processes to obtain polyphenols from different plant sources and to produce polyphenol-rich foods with bioactive properties (e.g. antioxidant, antibacterial, antiviral, anticancer properties) of interest for human health and wellbeing.

impact factor of separation and purification technology: Recent Frontiers of Phytochemicals Siddhartha Pati, Tanmay Sarkar, Dibyajit Lahiri, 2023-04-26 Phytochemicals have been present in human diet and life since the birth of mankind, including the consuming of plant foods and the application of herbal treatments. This coevolutionary interaction of plants and people has resulted in humans' reliance on food and medicinal plants as sources of macronutrients, micronutrients, and bioactive phytochemicals. Phytochemicals can be used as adjuvant agents and sensitizers in traditional antibiotic and anticancer therapy, reducing the potential of selecting resistant microbial strains and cancer cells. Recent Frontiers of Phytochemicals addresses the many processes of potential phytochemical evaluation of known sources, with a focus on phytochemical and pharmacological evaluations, and computational research into the structures and pharmacological mechanisms of natural products and their applications in medicine, food and biotech. - Novel extraction, characterization, and application method for phytochemicals in food, pharmacology, and biotechnology - Colour illustrations and extensive tables with state-of-art information - Covers potential sources of phytochemicals, their extraction and characterization techniques

impact factor of separation and purification technology: Handbook of Membrane

Separations Anil K. Pabby, S. Ranil Wickramasinghe, Ana-Maria Sastre, 2023-12-22 The third edition of the Handbook of Membrane Separations: Chemical, Pharmaceutical, Food, and Biotechnological Applications provides a comprehensive discussion of membrane applications. Fully updated to include the latest advancements in membrane science and technology, it is a one-of-its-kind overview of the existing literature. This fully illustrated handbook is written by experts and professionals in membrane applications from around the world. Key Features: Includes entirely new chapters on organic solvent-resistant nanofiltration, membrane condensers, membrane-reactors in hydrogen production, membrane materials for haemodialysis, and integrated membrane distillation Covers the full spectrum of membrane technology and its advancements Explores membrane applications in a range of fields, from biotechnological and food processing to industrial waste management and environmental engineering This book will appeal to both newcomers to membrane science as well as engineers and scientists looking to expand their knowledge on upcoming advancements in the field.

impact factor of separation and purification technology: Water Extraction of Bioactive Compounds Herminia Dominguez, Maria Jesus Gonzalez Munoz, 2017-09-20 Water Extraction of Bioactive Compounds: From Plants to Drug Development draws together the expert knowledge of researchers from around the world to outline the essential knowledge and techniques required to successfully extract bioactive compounds for further study. The book is a practical tool for medicinal chemists, biochemists, pharmaceutical scientists and academics working in the discovery and development of drugs from natural sources. The discovery and extraction of bioactive plant compounds from natural sources is of growing interest to drug developers, adding greater fuel to a simultaneous search for efficient, green technologies to support this. Particularly promising are aqueous based methods, as water is a cheap, safe and abundant solvent. Water Extraction of Bioactive Compounds: From Plants to Drug Development is a detailed guide to the fundamental concepts and considerations needed to successfully undertake such processes, supported by application examples and highlighting the most influential variables. Beginning with an introduction to plants as sources of drugs, the book highlights the need for a move towards both more rational and greener techniques in the field, and presents multiple innovative water-based strategies for the discovery and extraction of bioactive constituents of botanicals. A broad range of available techniques are reviewed, including conventional and pressurized hot water extraction techniques, intensified processes such as microwave-assisted, ultrasound-assisted processes, and enzyme assisted extraction, and processes using combined techniques. - Covers the theoretical background and range of techniques available to researchers, helping them to select the most appropriate extraction method for their needs - Presents up-to-date and cutting edge applications by international experts - Highlights current use and future potential for industrial scale applications -Offers a thorough introduction to plants as sources of drugs, highlighting strategies for the discovery of novel bioactive constituents of botanicals

impact factor of separation and purification technology: *Urban Mining for Waste Management and Resource Recovery* Pankaj Pathak, Prangya Ranjan Rout, 2021-12-20 Scientific management strategies can help in exploring anthropogenic wastes (human-made materials) as potential resources through the urban mining concept and be a panacea for sustainable development. This book covers five broader aspects of waste management and resource recovery in urban mining including solid and liquid waste management and treatment. It explains sustainable approaches of urban mining for the effective management of solid and liquid wastes and facilitates their conversion into secondary resources. Overall, this book provides details of urban mining and its different applications including current waste management problems, practices, and challenges faced worldwide. Presents a holistic approach for urban mining considering various types of wastes Describes contemporary integrated approaches for waste management with specific case studies Provides technical, social, and environmental aspects of solid and liquid wastes Considers aspects of sustainability and a circular bio-economy Incorporates pertinent case studies on water and wastewater management This volume caters to researchers and graduate students in environmental

engineering, solid waste management, wastewater treatment, and materials science.

impact factor of separation and purification technology: Feedstock-based Bioethanol Fuels. II. Waste Feedstocks Ozcan Konur, 2023-12-22 This book provides an overview of research on the production of bioethanol fuels from waste feedstocks such as second-generation residual sugar and starch feedstocks, food waste, industrial waste, urban waste, forestry waste, and lignocellulosic biomass at large with 17 chapters. In this context, there are eight sections where the first two chapters cover the production of bioethanol fuels from waste feedstocks at large. This book is the fourth volume in the Handbook of Bioethanol Fuels (Six-Volume Set). It shows that pretreatments and hydrolysis of the waste feedstocks, fermentation of hydrolysates, and separation and distillation of bioethanol fuels are the fundamental processes for bioethanol fuel production from these waste feedstocks. This book is a valuable resource for stakeholders primarily in research fields of energy and fuels, chemical engineering, environmental science and engineering, biotechnology, microbiology, chemistry, physics, mechanical engineering, agricultural sciences, food science and engineering, materials science, biochemistry, genetics, molecular biology, plant sciences, water resources, economics, business and management, transportation science and technology, ecology, public, environmental and occupational health, social sciences, toxicology, multi-disciplinary sciences, and humanities among others.

impact factor of separation and purification technology: Handbook of Smart Materials in Analytical Chemistry Miguel de la Guardia, Francesc A. Esteve-Turrillas, 2019-01-24 A comprehensive guide to smart materials and how they are used in sample preparation, analytical processes, and applications This comprehensive, two-volume handbook provides detailed information on the present state of new materials tailored for selective sample preparation and the legal frame and environmental side effects of the use of smart materials for sample preparation in analytical chemistry, as well as their use in the analytical processes and applications. It covers both methodological and applied analytical aspects, relating to the development and application of new materials for solid-phase extraction (SPE) and solid-phase microextraction (SPME), their use in the different steps and techniques of the analytical process, and their application in specific fields such as water, food, air, pharmaceuticals, clinical sciences and forensics. Every chapter in Handbook of Smart Materials in Analytical Chemistry is written by experts in the field to provide a comprehensive picture of the present state of this key area of analytical sciences and to summarize current applications and research literature in a critical way. Volume 1 covers New Materials for Sample Preparation and Analysis. Volume 2 handles Analytical Processes and Applications. Focuses on the development and applications of smart materials in analytical chemistry Covers both, methodological and applied analytical aspects, for the development of new materials and their use in the different steps and techniques of the analytical process and their application in specific fields Features applications in key areas including water, air, environment, pharma, food, forensic, and clinical Presents the available tools for the use of new materials suitable to aid recognition process to the sample preparation and analysis A key resource for analytical chemists, applied laboratories, and instrument companies Handbook of Smart Materials in Analytical Chemistry, 2V Set is an excellent reference book for specialists and advanced students in the areas of analytical chemistry, including both research and application environments.

impact factor of separation and purification technology: Phenolic Compounds in Food Leo M.L. Nollet, Janet Alejandra Gutierrez-Uribe, 2018-01-29 Phenolic compounds, one of the most widely distributed groups of secondary metabolites in plants, have received a lot of attention in the last few years since the consumption of vegetables and beverages with a high level of such compounds may reduce risks of the development of several diseases. This is partially due to their antioxidant power since other interactions with cell functions have been discovered. What's more, phenolic compounds are involved in many functions in plants, such as sensorial properties, structure, pollination, resistance to pests and predators, germination, processes of seed, development, and reproduction. Phenolic compounds can be classified in different ways, ranging from simple molecules to highly polymerized compounds. Phenolic Compounds in Food:

Characterization and Analysis deals with all aspects of phenolic compounds in food. In five sections, the 21 chapters of this book address the classification and occurrence of phenolic compounds in nature and foodstuffs; discuss all major aspects of analysis of phenolic compounds in foods, such as extraction, clean-up, separation, and detection; detail specific analysis methods of a number of classes of phenolic compounds, from simple molecules to complex compounds; describe the antioxidant power of phenolic compounds; and discuss specific analysis methods in different foodstuffs.

impact factor of separation and purification technology: Handbook of Nutraceuticals Volume II Yashwant Vishnupant Pathak, 2011-05-16 Due in part to an absence of universally accepted standardization methods, nutraceuticals and functional foods face regulatory ignorance, marketing incompetence and ethical impunity. Even though many researchers believe that there is a connection between nutraceuticals and functional foods and reduced health care expenses as well as disease prevent

impact factor of separation and purification technology: Anti-Corrosive Nanomaterials Renhui Zhang, Lei Guo, Ime Bassey Obot, 2023-08-15 Corrosion is a great challenge in many industries, especially in the automotive, aerospace, and oil and gas industries, with conservative estimations accounting for losses of around 2.2 trillion US dollars per year in the United States alone. Providing a comprehensive overview of the history and development of nanomaterials, this book discusses various practices for protection against corrosion. Key Features: Provides a comprehensive and updated review of major innovations in the field of nanomaterials in industrial, corrosion, and environmental science and engineering Encompasses design, characterization, mechanism, and application of nanomaterials from different strategies on the efficacy and major challenges associated with successful scaleup designing Essential reference for present and future research in nanomaterials Includes relevant aspects of organic and inorganic nanomaterials, hybrid nanomaterials, and nanocoatings in anticorrosion applications Coalescing a wide range of research on nanomaterials and anticorrosion practices, this book is of particular appeal to students, industry professionals, and academics.

impact factor of separation and purification technology: Phytochemistry in Corrosion Science Chandrabhan Verma, Ashish Kumar, Abhinay Thakur, 2024-03-27 Phytochemistry in Corrosion Science covers the use of plant extracts/phytochemicals in corrosion mitigation with industrial applications. It explores innovative and characterization approaches toward the utilization of plant extracts and their phytochemicals as potential corrosion inhibitors for several metals and their alloys. Providing a comprehensive overview of the green aspects of plant extracts as corrosion inhibitors, this book discusses the preparation of aqueous and organic phase extracts, and their advantages, disadvantages, and use for different aggressive media. It also examines aqueous and organic extracts that have been successfully used as corrosion inhibitors for various metals and electrolyte combinations. This book will be a useful reference for undergraduate and graduate students and academic researchers in the fields of phytochemistry, corrosion science and engineering, environmental science, chemical engineering, green chemistry, and mechanical/industrial engineering.

Technologies for Environmental Sustainability Mohammad Jawaid, Akil Ahmad, A. Vijaya Bhaskar Reddy, 2021-12-04 Ionic Liquid-based Technologies for Environmental Sustainability explores the range of sustainable and green applications of IL materials achieved in recent years, such as gas solubility, biomass pre-treatment, bio-catalysis, energy storage, gas separation and purification technologies. The book also provides a reference material for future research in IL-based technologies for environmental and energy applications, which are much in-demand due to sustainable, reusable and eco-friendly methods for highly innovative and applied materials. Written by eminent scholars and leading experts from around the world, the book aims to cover the synthesis and characterization of broad range of ionic liquids and their sustainable applications. Chapters provide cutting-edge research with state-of-the-art developments, including the use of IL-based

materials for the removal of pharmaceuticals, dyes and value-added metals. - Describes the fundamentals and major applications of ionic liquid materials - Covers up-to-date developments in novel applications of IL materials - Provides practical tips to aid researchers who work on ionic liquid applications

impact factor of separation and purification technology: *Microplastic Pollution* Navish Kataria, Vinod Kumar Garg, Changseok Han, Eldon R. Rene, 2025-01-31 This reference book reviews various aspects of microplastics, from their sources and manifestation in terrestrial, aquatic, and air environments to their fate in wastewater treatment systems. It also covers sampling, analysis, and detection methods for microplastics, along with advanced instrumentation for quantification. Further, the book presents health risk analysis and the toxicity of microplastic contamination, including their ecotoxicological impact on the environment and health risks associated with their accumulation in the tropical food chain and food web. The chapters also present studies exploring the health risks associated with microplastic additives and their interactions with other pollutants. The final chapters focus on plastic and microplastics management, exploring advanced technologies for bioplastics production, the biodegradation of plastics and bioplastics, and the role of nanotechnology in plastic management. This book serves as an important source for researchers, policymakers, and environmentalists concerned about the impact of microplastics on ecosystems and human health.

Science and Engineering Enrico Drioli, Lidietta Giorno, 2010-07-09 Comprehensive Membrane Science and Engineering, Four Volume Set covers all aspects of membrane science and technology from basic phenomena to the most advanced applications and future perspectives. Modern membrane engineering is critical to the development of process-intensification strategies and to the stimulation of industrial growth. The work presents researchers and industrial managers with an indispensable tool toward achieving these aims. Covers membrane science theory and economics, as well as applications ranging from chemical purification and natural gas enrichment to potable water Includes contributions and case studies from internationally recognized experts and from up-and-coming researchers working in this multi-billion dollar field Takes a unique, multidisciplinary approach that stimulates research in hybrid technologies for current (and future) life-saving applications (artificial organs, drug delivery)

impact factor of separation and purification technology: Advances in Chromatography, Volume 53 Eli Grushka, Nelu Grinberg, 2016-11-03 For more than four decades, scientists and researchers have relied on the Advances in Chromatography series for the most up-to-date information on a wide range of developments in chromatographic methods and applications. For Volume 53, the series editors have invited established, well-known chemists to offer cutting-edge reviews of chromatographic methods with applications in the life sciences. The clear presentation of topics and vivid illustrations for which this series has become known makes the material accessible and engaging to analytical, biochemical, organic, polymer, and pharmaceutical chemists at all levels of technical skill.

impact factor of separation and purification technology: Herbal Medicines Giacinto Bagetta, Marco Cosentino, Marie Tiziana Corasaniti, Shinobu Sakurada, 2016-04-19 The deregulation of dietary supplements and natural products marketing by the FDA has widened the natural products market in Europe and worldwide. While the discussion about the validity of the plant approach to nutrition and diseases treatment continues, the explosion of the use of whatever is considered natural has generated concern about effec

impact factor of separation and purification technology: Plant-Based Functional Foods and Phytochemicals Megh R. Goyal, Arijit Nath, Hafiz Ansar Rasul Suleria, 2021-03-30 Plant-Based Functional Foods and Phytochemicals: From Traditional Knowledge to Present Innovation covers the importance of the therapeutic health benefits of phytochemicals derived from plants. It discusses the isolation of potential bioactive molecules from plant sources along with their value to human health. It focuses on physical characteristics, uniqueness, uses, distribution, traditional and nutritional

importance, bioactivities, and future trends of different plant-based foods and food products. Functional foods, beyond providing basic nutrition, may offer a potentially positive effect on health and cures for various disease conditions, such as metabolic disorders (including diabetes), cancer, and chronic inflammatory reactions. The volume looks at these natural products and their bioactive compounds that are increasingly utilized in preventive and therapeutic medications and in the production of pharmaceutical supplements and as food additives to increase functionality. It also describes the concept of extraction of bioactive molecules from plant sources, both conventional and modern extraction techniques, available sources, biochemistry, structural composition, and potential biological activities.

impact factor of separation and purification technology: Algal Bioreactors Eduardo Jacob-Lopes, Leila Queiroz Zepka, Mariany Costa Depra, 2024-11-21 Algal Bioreactors: Science, Engineering and Technology of Downstream Processes, Volume Two, is part of a comprehensive two-volume set that provides the knowledge needed to design, develop, and operate algal bioreactors for the production of renewable resources. Supported by critical parameters and properties, mathematical models and calculations, methods, and practical real-world case studies, readers will find everything they need to know on the upstream and downstream processes of algal bioreactors for renewable resource production. Bringing together renowned experts in microalgal biotechnology, this book will help researchers, scientists, and engineers from academia and industry overcome barriers and advance the production of renewable resources and renewable energy from algae. Students will also find invaluable explanations of the fundamentals and key principles of algal bioreactors, making it an accessible read for students of engineering, microbiology, biochemistry, biotechnology, and environmental sciences. - Presents the physical, biological, environmental, and economic parameters of downstream processes in the operation and development of algal bioreactors to produce renewable resources - Explains the main configurations and designs of algal bioreactors, presenting recent innovations and future trends - Integrates the scientific, engineering, technology, environmental, and economic aspects of producing renewable resources and other valuable bioproducts using algal bioreactors - Provides real-world case studies at various scales to demonstrate the practical implementation of the various technologies and methods discussed

Related to impact factor of separation and purification technology

10003000000000
]SCI_JCRSCI
effect, affect, impact ["[]"[][][][] - [] effect, affect, [] impact [][][][][][][][][] 1. effect. To
effect (\square) $\square\square\square\square/\square\square$ $\square\square\square\square\square$ \leftarrow which is an effect (\square) The new rules will effect (\square), which is an
Communications Earth & Environment [][][][] - [][[][Communications Earth & Ea
Environment
csgo[rating[rws[kast]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
10.900000000000KD00000000100000
2025win11 win11:win7win7 win11 win11win10
\mathbf{pc}
000001 0 0000000 - 00 000000000000000000000000
10000000000IF02920 00000IF
] Nature synthesis

```
Nature Synthesis
00000000"Genshin Impact" - 00 000000Impact
Communications Earth & Environment [ ] - [ ] Communications Earth & 
Environment
2025
\mathbf{pc}
One of the synthesis of the sister of the synthesis of th
ONature Synthesis
00000000"Genshin Impact" - 00 000000Impact
DODDSCIDICRODODSCIONODO DODDODICRODODODODODODODIMPACT Factor
effect (\Box\Box) \Box\Box\Box\Box\Box\Box \leftarrow which is an effect (\Box\Box) The new rules will effect (\Box\Box), which is an
Environment
2025
\mathbf{pc}
Nature Synthesis
00000000"Genshin Impact" - 00 000001mpact
effect, affect, impact ["\ \ ]"\ \ ] - [\ \ ] effect, affect, [\ \ ] impact [\ \ ] impact [\ \ ] 1. effect. To
effect (\Box\Box) \Box\Box\Box\Box\Box\Box \leftarrow which is an effect (\Box\Box) The new rules will effect (\Box\Box), which is an
Communications Earth & Environment [ [ ] [ ] [ ] Communications Earth & Communications Ea
```

```
2025
One of the synthesis of the sister of the synthesis of th
ONature Synthesis
00000000"Genshin Impact" - 00 000000Impact
effect (\Box\Box) \Box\Box\Box\Box\Box\Box \leftarrow which is an effect (\Box\Box) The new rules will effect (\Box\Box), which is an
Communications Earth & Environment [ ] - [ ] Communications Earth & 
Environment
2025
One of the synthesis and the sister of the synthesis of t
ONature Synthesis
00000000"Genshin Impact" - 00 000001mpact
DODDSCIDICRODODOSCIONODO DODDODO DODDODODODODODODO Impact Factor
effect, affect, impact ["[]"[][][][] - [] effect, affect, [] impact [][][][][][][][][] 1. effect. To
effect (\Box\Box) \Box\Box\Box\Box\Box\Box \leftarrow which is an effect (\Box\Box) The new rules will effect (\Box\Box), which is an
Environment
2025
\mathbf{pc}
Nature Synthesis
```

Back to Home: https://staging.devenscommunity.com